Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The dispersed remnants of stellar nurseries, stellar associations, provide unparalleled samples of coeval stars critical for studies of stellar and planetary formation and evolution. The Carina Stellar Association is one of the closest stellar associations to Earth, and yet measurements of its age have varied from 13 to 45 Myr. We aim to update the age of Carina using the lithium depletion boundary (LDB) method. We obtain new measurements of the Li 6708 Å absorption feature in likely members using optical spectra from the Goodman High Throughput Spectrograph on SOAR and NRES on LCO. We detect the depletion boundary atMK≃ 6.8 (M5). This age is consistent within uncertainties across six different models, including those that account for magnetic fields and spots. We also estimate the age through analysis of the group’s overall variability, and by comparing the association members’ color–magnitude diagram to stellar evolutionary models using a Gaussian Mixture Model, recovering ages consistent with the LDB. Combining these age measures we obtain an age for the Carina association of Myr. The resulting age agrees with the older end of previous age measurements and is consistent with the lithium depletion age for the neighboring Tucana-Horologium moving group.more » « less
-
Abstract Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (NotchandLOCoR). We find that the planets are 2.10 ± 0.09R⊕and 2.88 ± 0.10R⊕and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K= 9.1 mag), small (R*= 0.44R⊙), and cool (Teff= 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST.more » « less
-
Abstract Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15R⊕planets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05RJ(9.5R⊕) planet transiting a very-low-mass star (0.170 ± 0.015M⊙) every 27.4 days. TOI 1227's kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5MJ. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common <5R⊕planets.more » « less
An official website of the United States government
